55 research outputs found

    Influence-Optimistic Local Values for Multiagent Planning --- Extended Version

    Get PDF
    Recent years have seen the development of methods for multiagent planning under uncertainty that scale to tens or even hundreds of agents. However, most of these methods either make restrictive assumptions on the problem domain, or provide approximate solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such upper bounds for problems with non-factored value functions. To allow for meaningful benchmarking through measurable quality guarantees on a very general class of problems, this paper introduces a family of influence-optimistic upper bounds for factored decentralized partially observable Markov decision processes (Dec-POMDPs) that do not have factored value functions. Intuitively, we derive bounds on very large multiagent planning problems by subdividing them in sub-problems, and at each of these sub-problems making optimistic assumptions with respect to the influence that will be exerted by the rest of the system. We numerically compare the different upper bounds and demonstrate how we can achieve a non-trivial guarantee that a heuristic solution for problems with hundreds of agents is close to optimal. Furthermore, we provide evidence that the upper bounds may improve the effectiveness of heuristic influence search, and discuss further potential applications to multiagent planning.Comment: Long version of IJCAI 2015 paper (and extended abstract at AAMAS 2015

    The Role of Diverse Replay for Generalisation in Reinforcement Learning

    Full text link
    In reinforcement learning (RL), key components of many algorithms are the exploration strategy and replay buffer. These strategies regulate what environment data is collected and trained on and have been extensively studied in the RL literature. In this paper, we investigate the impact of these components in the context of generalisation in multi-task RL. We investigate the hypothesis that collecting and training on more diverse data from the training environment will improve zero-shot generalisation to new environments/tasks. We motivate mathematically and show empirically that generalisation to states that are "reachable" during training is improved by increasing the diversity of transitions in the replay buffer. Furthermore, we show empirically that this same strategy also shows improvement for generalisation to similar but "unreachable" states and could be due to improved generalisation of latent representations.Comment: 14 pages, 8 figure

    E-MCTS: Deep Exploration in Model-Based Reinforcement Learning by Planning with Epistemic Uncertainty

    Full text link
    One of the most well-studied and highly performing planning approaches used in Model-Based Reinforcement Learning (MBRL) is Monte-Carlo Tree Search (MCTS). Key challenges of MCTS-based MBRL methods remain dedicated deep exploration and reliability in the face of the unknown, and both challenges can be alleviated through principled epistemic uncertainty estimation in the predictions of MCTS. We present two main contributions: First, we develop methodology to propagate epistemic uncertainty in MCTS, enabling agents to estimate the epistemic uncertainty in their predictions. Second, we utilize the propagated uncertainty for a novel deep exploration algorithm by explicitly planning to explore. We incorporate our approach into variations of MCTS-based MBRL approaches with learned and provided dynamics models, and empirically show deep exploration through successful epistemic uncertainty estimation achieved by our approach. We compare to a non-planning-based deep-exploration baseline, and demonstrate that planning with epistemic MCTS significantly outperforms non-planning based exploration in the investigated deep exploration benchmark.Comment: Submitted to NeurIPS 2023, accepted to EWRL 202

    Optimal and Approximate Q-value Functions for Decentralized POMDPs

    Get PDF
    Decision-theoretic planning is a popular approach to sequential decision making problems, because it treats uncertainty in sensing and acting in a principled way. In single-agent frameworks like MDPs and POMDPs, planning can be carried out by resorting to Q-value functions: an optimal Q-value function Q* is computed in a recursive manner by dynamic programming, and then an optimal policy is extracted from Q*. In this paper we study whether similar Q-value functions can be defined for decentralized POMDP models (Dec-POMDPs), and how policies can be extracted from such value functions. We define two forms of the optimal Q-value function for Dec-POMDPs: one that gives a normative description as the Q-value function of an optimal pure joint policy and another one that is sequentially rational and thus gives a recipe for computation. This computation, however, is infeasible for all but the smallest problems. Therefore, we analyze various approximate Q-value functions that allow for efficient computation. We describe how they relate, and we prove that they all provide an upper bound to the optimal Q-value function Q*. Finally, unifying some previous approaches for solving Dec-POMDPs, we describe a family of algorithms for extracting policies from such Q-value functions, and perform an experimental evaluation on existing test problems, including a new firefighting benchmark problem

    Bad Habits: Policy Confounding and Out-of-Trajectory Generalization in RL

    Full text link
    Reinforcement learning agents may sometimes develop habits that are effective only when specific policies are followed. After an initial exploration phase in which agents try out different actions, they eventually converge toward a particular policy. When this occurs, the distribution of state-action trajectories becomes narrower, and agents start experiencing the same transitions again and again. At this point, spurious correlations may arise. Agents may then pick up on these correlations and learn state representations that do not generalize beyond the agent's trajectory distribution. In this paper, we provide a mathematical characterization of this phenomenon, which we refer to as policy confounding, and show, through a series of examples, when and how it occurs in practice

    Reinforcement Learning by Guided Safe Exploration

    Full text link
    Safety is critical to broadening the application of reinforcement learning (RL). Often, we train RL agents in a controlled environment, such as a laboratory, before deploying them in the real world. However, the real-world target task might be unknown prior to deployment. Reward-free RL trains an agent without the reward to adapt quickly once the reward is revealed. We consider the constrained reward-free setting, where an agent (the guide) learns to explore safely without the reward signal. This agent is trained in a controlled environment, which allows unsafe interactions and still provides the safety signal. After the target task is revealed, safety violations are not allowed anymore. Thus, the guide is leveraged to compose a safe behaviour policy. Drawing from transfer learning, we also regularize a target policy (the student) towards the guide while the student is unreliable and gradually eliminate the influence of the guide as training progresses. The empirical analysis shows that this method can achieve safe transfer learning and helps the student solve the target task faster.Comment: Accecpted at ECAI 202

    Decentralized multi-robot cooperation with auctioned pomdps

    Get PDF
    ABSTRACT Planning under uncertainty faces a scalability problem when considering multi-robot teams, as the information space scales exponentially with the number of robots. To address this issue, this paper proposes to decentralize multi-agent Partially Observable Markov Decision Process (POMDPs) while maintaining cooperation between robots by using POMDP policy auctions. Auctions provide a flexible way of coordinating individual policies modeled by POMDPs and have low communication requirements. Additionally, communication models in the multi-agent POMDP literature severely mismatch with real inter-robot communication. We address this issue by applying a decentralized data fusion method in order to efficiently maintain a joint belief state among the robots. The paper focuses on a cooperative tracking application, in which several robots have to jointly track a moving target of interest. The proposed ideas are illustrated in real multi-robot experiments, showcasing the flexible and robust coordination that our techniques can provide

    Bounded approximations for linear multi-objective planning under uncertainty.

    Get PDF
    Abstract Planning under uncertainty poses a complex problem in which multiple objectives often need to be balanced. When dealing with multiple objectives, it is often assumed that the relative importance of the objectives is known a priori. However, in practice human decision makers often find it hard to specify such preferences exactly, and would prefer a decision support system that presents a range of possible alternatives. We propose two algorithms for computing these alternatives for the case of linearly weighted objectives. First, we propose an anytime method, approximate optimistic linear support (AOLS), that incrementally builds up a complete set of -optimal plans, exploiting the piecewise-linear and convex shape of the value function. Second, we propose an approximate anytime method, scalarised sample incremental improvement (SSII), that employs weight sampling to focus on the most interesting regions in weight space, as suggested by a prior over preferences. We show empirically that our methods are able to produce (near-)optimal alternative sets orders of magnitude faster than existing techniques, thereby demonstrating that our methods provide sensible approximations in stochastic multi-objective domains
    corecore